Problem 17 of 30
Let $f:\mathbb{R} \rightarrow \mathbb{R}$ be defined as
$f(x) = \left\{\begin{array}{ll}2\sin\left(-\dfrac{\pi x}{2}\right), & \text{ if }x \lt -1 \\ |ax^2 + x + b|, & \text{ if }-1 \le x \le 1 \\ \sin\left(\pi x \right), & \text{ if }x \gt 1\end{array}\right.$
If $f(x)$ is continuous on $\mathbb{R}$, then $a + b$ equals: