Solution:
We will solve this problem using two approaches, as follows.
Approach 1 - Using Logical Deduction:
In this approach we will find at least one case where either of the expressions evaluates to $0$, which will show that the respective expression is not a tautology.
If statement $(a)$ is not a tautology, then for some value of $p, q$ $(\lnot q \land (p \rightarrow q)) \rightarrow \lnot p = 0$, which means $\lnot p = 0$ and $(\lnot q \land (p \rightarrow q)) = 1$
-----------book page break-----------
$\lnot p = 0$
$\Rightarrow p = 1$
$(\lnot q \land (p \rightarrow q)) = 1$
$\Rightarrow \lnot q \land( 1 \Rightarrow q) = 1$
$\therefore \lnot q = 1$ and $ 1 \rightarrow q = 1$
If $\lnot q = 1$
$\Rightarrow q = 0$
If $1 \rightarrow q = 1$
$\therefore q = 1$
This is a contradiction, therefore there is no case where the overall expression evaluates to $0$ and this is a tautology.
If statement $(b)$ is not a tautology, then there is some tuple $(p, q)$ for which $((p \lor q) \land \lnot p) \rightarrow q = 0$
Therefore, $((p \lor q) \land \lnot p) = 1$ and $q = 0$
$((p \lor 0) \land \lnot p) = 1$
$\therefore \lnot p = 1$
$\Rightarrow p = 0$
Putting $p = 0$ and $q = 0$, we get the overall expression as:
$((p \lor q) \land \lnot p) \rightarrow q$
$= ((0 \lor 0) \land \lnot 0) \rightarrow 0$
$= (0 \land 1) \rightarrow 0$
$= 0 \rightarrow 1$
$= 1$
Therefore, there is no tuple $(p, q)$ for which this expression yields a result of $0$, hence, this is a tautology.
Therefore, $(a)$ and $(b)$ both are tautologies.
-----------book page break-----------
Approach 2 - Using Truth Tables:
Here we will construct the truth table for each of the given expressions to see if one or both are tautologies or not.
$(\lnot q \land (p \rightarrow q)) \rightarrow \lnot p$
$p$ | $q$ | $p \rightarrow q$
| $\lnot q \land (p \rightarrow q)$
| $(\lnot q \land (p \rightarrow q)) \rightarrow \lnot p$ |
$0$ | $0$ | $1$ | $1$ | $1$ |
$0$ | $1$ | $1$ | $0$ | $1$ |
$1$ | $0$ | $0$ | $0$ | $1$ |
$1$ | $1$ | $1$ | $0$ | $1$ |
$((p \lor q) \land \lnot p) \rightarrow q$
$p$ | $q$ | $(p \lor q) \land \lnot p$
| $((p \lor q) \land \lnot p) \rightarrow q$
|
$0$ | $0$ | $0$ | $1$ |
$0$ | $1$ | $1$ | $1$ |
$1$ | $0$ | $0$ | $1$ |
$1$ | $1$ | $1$ | $1$ |
From the above tables we can conclude that none of the statements have any set of inputs, that will evaluate to $0$. Therefore, both statements are tautologies.