Solution:
We can inspect each of the functions inside the absolute symbol and find the possible points of intersection that may not be differentiable:
Let:
$u(x) = |2x + 1|$
$\Rightarrow u(x) = \left\{\begin{array}{ll} -2x - 1 & \text{for } x \lt -\dfrac{1}{2} \\ 2x + 1 & \text{for } x \ge -\dfrac{1}{2} \end{array} \right.$
Let $v(x) = 3|x + 2|$
$\Rightarrow v(x) = \left\{\begin{array}{ll} -3(x + 2) & \text{for } x \lt -2 \\ 3(x + 2) & \text{for } x \ge -2 \end{array} \right.$
-----------book page break-----------
Let $w(x) = |x^2 + x - 2|$
$\Rightarrow w(x) = \left\{\begin{array}{ll} -x^2 - x + 2 & \text{for } -2 \le x \le 1 \\ x^2 + x - 2 & \text{otherwise} \end{array} \right.$
Now, we can have the function definition in the ranges $(-\infty, -2)$, $[-2, -\dfrac{1}{2}]$, $(-\dfrac{1}{2}, 1]$ and $(1, +\infty)$
We can define $f(x)$ as:
$f(x) = \left\{\begin{array}{ll}-(2x+1) + 3(x+2) + (x^2 + x - 2) & \text{for } x \in (-\infty, -2) \\ -(2x+1) - 3(x+2) - (x^2 + x - 2) & \text{for } x \in (-2, - \dfrac{1}{2}) \\ (2x+1) - 3(x+2) - (x^2 + x - 2) & \text{for } x \in (-\dfrac{1}{2}, 1) \\ (2x+1) - 3(x+2) + (x^2 + x - 2) & \text{for } x \in (1, \infty) \end{array} \right.$
$= \left\{\begin{array}{ll}x^2 + 2x + 3 & \text{for } x \in (-\infty, -2) \\ -x^2 - 6x - 5 & \text{for } x \in (-2, - \dfrac{1}{2}) \\ -x^2 - 2x - 3 & \text{for } x \in (-\dfrac{1}{2}, 1) \\ x^2 - 7 & \text{for } x \in (1, \infty) \end{array} \right.$
-----------book page break-----------
Differentiating $f(x)$ in these ranges, we get:
$f'(x) = \left\{\begin{array}{ll}2x + 2 & \text{for } x \in (-\infty, -2) \\ -2x - 6 & \text{for } x \in (-2, - \dfrac{1}{2}) \\ -2x - 2 & \text{for } x \in (-\dfrac{1}{2}, 1) \\ 2x & \text{for } x \in (1, \infty) \end{array} \right.$
Left side derivative and right side derivative at $x = -2$, are $-2$ and $-2$ respectively. Therefore $f'(-2)$ exists, and $f(x)$ is differentiable at $x = -2$.
Left side derivative and right side derivative at $x = -\dfrac{1}{2}$, are $-5$ and $-1$ respectively. Therefore $f'(-\dfrac{1}{2})$ does not exist.
Left side derivative and right side derivative at $x = 1$, are $-4$ and $+2$ respectively. Therefore $f'(1)$ does not exist.
Therefore, the number of points where $f(x)$ is not differentiable for $x \in \mathbb{R}$ is $2$