Problem 2 of 30
If $(1, 5, 35)$, $(7, 5, 5)$, $(1, \lambda, 7)$ and $(2\lambda, 1, 2)$ are coplanar, then the sum of all possible values of $\lambda$ is:
Solution:
Let $P = (1, 5, 35)$, $Q = (7, 5, 5)$, $R = (1, \lambda, 7)$ and $S = (2\lambda, 1, 2)$
Since $P, Q, R$ and $S$ are coplanar,
$\begin{vmatrix} \overrightarrow{PQ}_x & \overrightarrow{PQ}_y & \overrightarrow{PQ}_z \\ \overrightarrow{PR}_x & \overrightarrow{PR}_y & \overrightarrow{PR}_z \\ \overrightarrow{PS}_x & \overrightarrow{PS}_y & \overrightarrow{PS}_z \end{vmatrix} = 0$
(Here $\overrightarrow{AB}_x$ denotes the $x$ -component of the vector $\overrightarrow{AB}$)
-----------book page break-----------
$\Rightarrow \begin{vmatrix} 6 & 0 & -30 \\ 0 & \lambda - 5 & -28 \\ 2 \lambda - 1 & -4 & -33 \end{vmatrix} = 0$
$\Rightarrow \begin{vmatrix} 1 & 0 & -5 \\ 0 & \lambda - 5 & -28 \\ 2 \lambda - 1 & -4 & -33 \end{vmatrix} = 0$
$\Rightarrow 1[(-33)(\lambda - 5) - (-28)(-4)] + (-5)[(0)(-4) - (\lambda - 5)(2 \lambda - 1)] = 0$
$\Rightarrow -33 \lambda + 165 - 112 + 10\lambda ^2 - 55 \lambda + 25 = 0$
$\Rightarrow 10 \lambda^2 - 88 \lambda + 78 = 0$
$\Rightarrow 5 \lambda^2 - 44 \lambda + 39 = 0$
$\Rightarrow (5 \lambda - 39)(\lambda - 1) = 0$
$\Rightarrow \lambda = \dfrac{39}{5}$ or $1$
Therefore, the sum of all possible values of $\lambda = \dfrac{39}{5} + 1 = \dfrac{44}{5}$