Solution:
$a + b + c = 0$
$\Rightarrow a = -(b + c)$
$\Rightarrow a^2 = (b + c)^2$
Using the above substitution, we can simplify the first term $\dfrac{a^2}{2a^2 + bc}$ of $P$.
$\dfrac{a^2}{2a^2 + bc}$
$= \dfrac{a^2}{2(b+ c)^2 + bc}$
-----------book page break-----------
$= \dfrac{a^2}{2b^2 + 4bc + 2c^2 + bc}$
$= \dfrac{a^2}{2b^2 + 4bc + bc + 2c^2}$
$= \dfrac{a^2}{2b(b + 2c) + c(b + 2c)}$
$= \dfrac{a^2}{(2b + c)(b + 2c)}$
$= \dfrac{a^2}{(b + b + c)(c + b + c)}$
We can again substitute $b + c = -a$ and get this term as:
$\dfrac{a^2}{(b - a)(c - a)}$
Since the other two terms are symmetric, using similar method we will get:
$\dfrac{b^2}{2b^2 + ca} = \dfrac{b^2}{(a - b)(c - b)}$
and
$\dfrac{c^2}{2c^2 + ab} = \dfrac{c^2}{(a - c)(b - c)}$
Therefore,
$P = \dfrac{a^2}{2a^2 + bc} + \dfrac{b^2}{2b^2 + ca} + \dfrac{c^2}{2c^2 + ab}$
$= \dfrac{a^2}{(b - a)(c - a)} + \dfrac{b^2}{(a - b)(c - b)} + \dfrac{c^2}{(a - c)(b - c)}$
-----------book page break-----------
Maintaining cyclic order we can rewrite this as:
$P = -\dfrac{a^2}{(a - b)(c - a)} - \dfrac{b^2}{(a - b)(b - c)} - \dfrac{c^2}{(c - a)(b - c)}$
$= -\dfrac{a^2(b-c) + b^2(c-a) + c^2(a - b)}{(a - b)(b - c)(c - a)}$
$= -\dfrac{a^2(b-c) + b^2c- b^2a + c^2a - c^2b}{(a - b)(b - c)(c - a)}$
$= -\dfrac{a^2(b-c) + b^2c - c^2b - b^2a + c^2a}{(a - b)(b - c)(c - a)}$
$= -\dfrac{a^2(b-c) + bc(b - c) - a(b^2 - c^2)}{(a - b)(b - c)(c - a)}$
$= -\dfrac{(b - c)(a^2 + bc - ab - ac)}{(a - b)(b - c)(c - a)}$
$= -\dfrac{(b - c)(a^2 - ac + bc - ab)}{(a - b)(b - c)(c - a)}$
$= -\dfrac{(b - c)\{a(a - c) - b(a - c)\}}{(a - b)(b - c)(c - a)}$
$= -\dfrac{(b - c)(a-b)(a - c)}{(a - b)(b - c)(c - a)}$
-----------book page break-----------
$= \dfrac{(a - b)(b - c)(c - a)}{(a - b)(b - c)(c - a)}$
Since it is given that $P$ is defined, we can conclude that $P \ne \dfrac{0}{0}$, $\therefore a \ne b \ne c$
Therefore, $P = 1$