Solution:
$l_1 : \overrightarrow{r} = (3 + t)\hat{i} + (-1 + 2t)\hat{j} + (4 + 2t)\hat{k}$
$\Rightarrow L_1: \dfrac{x - 3}{1} = \dfrac{y + 1}{2} = \dfrac{z - 4}{2} $
$\therefore$ direction ratios of $L_1 = (1, 2, 2)$
$l_2 : \overrightarrow{r} = (3 + 2s)\hat{i} + (3 + 2s)\hat{j} + (2 + s)\hat{k}$
$\Rightarrow L_2: \dfrac{x - 3}{2} = \dfrac{y - 3}{2} = \dfrac{z - 2}{1}$
$\therefore$ direction ratios of $L_2 = (2, 2, 1)$
-----------book page break-----------
Let the direction ratios of required line, $L$, be $a, b, c.$
Since $L$ is perpendicular to $L_1$ and $L_2,$ we have,
$1a + 2b + 2c = 0$ $...(i)$
$2a + 2b + 1c = 0$ $...(ii)$
Upon solving for the direction ratios of $L$ from $(i)$ and $(ii)$ we get the ratios as $(-2, 3, -2)$
$L : \dfrac{x}{2} = \dfrac{y}{-3} = \dfrac{z}{2} $
Solving for the intersection point of $L$ and $L_1,$ we obtain,
$(2 \lambda, -3 \lambda, 2 \lambda) = (\mu+3, 2 \mu - 1, 2 \mu + 4)$
$\Rightarrow \mu = -1, \lambda = 1$
Therefore, the intersection point $P = (2, -3, 2)$
Let a point on $L_2$ be $Q = (2v + 3, 2v + 3, v + 2 )$
$PQ = \sqrt{(2v + 3 - 2 )^2 + (2v + 3 + 3)^2 + (v + 2 - 2)^2} = \sqrt{17} $
$\Rightarrow (2v + 1)^2 + (2v + 6)^2 + (v)^2 = 17$
$\Rightarrow 9v^2 + 28v + 20 = 0$
$\Rightarrow v = -2 $ or $v = - \dfrac{10}{9}$
-----------book page break-----------
$\therefore Q = (-1, -1, 0)$ or $\left( \dfrac{7}{9}, \dfrac{7}{9}, \dfrac{8}{9} \right) $
Since $Q$ must lie in the first octant, $Q \neq (-1, -1, 0)$
$\therefore Q = \left( \dfrac{7}{9}, \dfrac{7}{9}, \dfrac{8}{9} \right)$
$18(a+b+c) = 18 \left( \dfrac{7}{9} + \dfrac{7}{9} + \dfrac{8}{9}\right) = 44$