De Moivre's Theorem
In this chapter we are going to learn about a famous identity based on .
Introduction:
The de Moivre's theorem (also known as de Moivre's identity), is named after its proposer Abraham De Moivre.
It states that for any $x \in \mathbb{R}$ and $n \in \mathbb{N}$ the relation:
$(\cos x + i \sin x)^n = \cos nx + i \sin nx$, holds true.
Proof (Using Euler's Formula):
Euler's formula states that
$e^{ix} = \cos x + i\sin x$ $...eqn(i)$
Applying the above formula to $nx$ instead of $x$, we get:
$e^{inx} = \cos nx + i \sin nx$
$\Rightarrow {\left(e^{ix}\right)}^n = \cos nx + i \sin nx$
Substituting $e^{ix} = \cos x + i\sin x$ from $eqn(i)$ above, we get:
$\Rightarrow {\left(\cos x + i\sin x\right)}^n = \cos nx + i \sin nx$
Proof (Using Induction):
Let the relationship $(\cos x + i \sin x)^n = \cos nx + i \sin nx$ be true for some $n = k$
$\therefore (\cos x + i \sin x)^k = \cos kx + i \sin kx$
-----------book page break-----------
Multiplying both sides by $(\cos x + i \sin x)$ we get:
$(\cos x + i \sin x)^k(\cos x + i \sin x) = (\cos kx + i \sin kx)(\cos x + i \sin x)$
$\Rightarrow (\cos x + i \sin x)^{k + 1} = \cos kx \cos x + i\cos x \sin kx + i\sin x \cos kx + i^2\sin kx \sin x$
$\Rightarrow (\cos x + i \sin x)^{k + 1} = \cos kx \cos x - \sin kx \sin x + i(\cos x \sin kx + \sin x \cos kx)$ $\because i^2 = -1$
$\Rightarrow (\cos x + i \sin x)^{k + 1} = \cos (kx + x) + i\sin(kx + x)$ $\because i^2 = -1$
$\Rightarrow (\cos x + i \sin x)^{k + 1} = \cos (kx + x) + i\sin(kx + x)$
$\Rightarrow (\cos x + i \sin x)^{k + 1} = \cos (k + 1)x + i\sin(k + 1)x$
Therefore, the given relationship is true for $n = k + 1$, if it is true for $n = k$
For the base case, we use $n = 1$, and get the $LHS$ as:
$(\cos x + i \sin x)^1 = \cos x + i \sin x$
and the $RHS$ as:
$(\cos 1x + i \sin 1x) = \cos x + i \sin x$
Therefore, by induction it is proven that $(cos x + i \sin x)^n = \cos nx + i \sin nx$ for all $n \in \mathbb{N}$