Diagonal And Sides Of Parallelogram


Theory
The sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of the four sides.
That is, for any given parallelogram, $ABCD$,
$AC^2 + BD^2 = AB^2 + BC^2 + CD^2 + DA^2$
or equivalently, since opposite sides of a parallelogram are equal,
$AC^2 + BD^2 = 2AB^2 + 2BC^2$

Construction
We draw a parallelogram $ABCD$ as shown below, and drop perpendiculars from to vertices $C$ and $D$ the opposite sides at points $E$ and $F$.


Proof
Considering right-angled $\triangle CEA$,
$AC^2 = AE^2 + CE^2$
$\Rightarrow AC^2 = (AB + BE)^2 + CE^2$
$\Rightarrow$ $AC^2 = AB^2 + BE^2 + 2AB.BE + CE^2$            $...eqn(i)$

-----------book page break-----------
Similarly, considering right-angled $\triangle DFB$,
$DB^2 = BF^2 + DF^2$
$\Rightarrow DB^2 = (AB - AF)^2 + DF^2$
$\Rightarrow$ $DB^2 = AB^2 + AF^2 - 2AB.AF + DF^2$            $...eqn(ii)$

Considering $\triangle s\ DAF$ and $CBE$
$\angle DAF = \angle CBE$
$\angle DFA = \angle CEB$
$AD = BC$
$\therefore \triangle DAF \cong \triangle CBE$
$\therefore AF = BE$

Adding $eqn\ (i)$ and $eqn\ (ii)$,
$AC^2 + DB^2 = AB^2 + BE^2 + 2AB.BE + CE^2 + AB^2 + AF^2$
                            $- 2AB.AF + DF^2$

$\Rightarrow AC^2 + DB^2 = AB^2 + BE^2 + 2AB.AF + CE^2 + AB^2 + AF^2$
                            $- 2AB.AF + DF^2$

$\Rightarrow AC^2 + DB^2 = AB^2 + BE^2 + CE^2 + AB^2 + AF^2 + DF^2$

Since $\triangle s$ $AFD$ and $BEC$ are right-angled,
$AF^2 + DF^2 = AD^2$ and $BE^2 + CE^2 = BC^2$

$\therefore AC^2 + DB^2 = AB^2 + BC^2 + AB^2 + AD^2$

$\Rightarrow AC^2 + DB^2 = AB^2 + BC^2 + CD^2 + DA^2$

or substituting $CD = AB$ and $DA = AB$,

$AC^2 + DB^2 = 2AB^2 + 2BC^2$