Ceva's Theorem
$\underline{Theorem}:$
In a $\triangle ABC$ for any internal point $P$, if we extend $AP$, $BP$ and $CP$ to meet the opposite sides at $D$, $E$ and $F$ respectively, then
$\dfrac{AF\cdot BD \cdot CE}{FB \cdot DC \cdot EA} = 1$
$\underline{Construction}:$
We draw the diagram as described in the theory, no additional construction required.
$\underline{Proof}:$
Considering $\triangle PAF$ and $\triangle PFB$, with $PF$ and $FB$ as their respective bases, then both triangles have equal height, and their areas are proportional to their bases.
$\therefore \dfrac{[PAF]}{[PFB]} = \dfrac{AF}{FB}$
-----------book page break-----------
Similarly considering $\triangle CAF$ and $\triangle CFB$
$\dfrac{[CAF]}{[CFB]} = \dfrac{AF}{FB}$
$\therefore \dfrac{AF}{FB} = \dfrac{[CAF]}{[CFB]} = \dfrac{[PAF]}{[PFB]} = k$
$\therefore \dfrac{[CAF]}{[CFB]} = k$
$\therefore [CAF] = k \times [CFB]$ $...eqn(i)$
and
$[PAF] = k \times [PFB]$ $...eqn(ii)$
$eqn(i) - eqn(ii)$ gives us:
$[CAF] - [PAF] = k ([CFB] - [PFB])$
$\Rightarrow [CPA] = k [CPB]$
$\therefore \dfrac{[CPA]}{[CPB]} = k = \dfrac{AF}{FB}$
$\Rightarrow$ $\dfrac{AF}{FB} = \dfrac{[CPA]}{[CPB]}$ $...eqn(iii)$
Similarly, we can show that:
$\dfrac{BD}{DC} = \dfrac{[APB]}{[APC]}$ $...eqn(iv)$ and
$\dfrac{CE}{EA} = \dfrac{[BPC]}{[BPA]}$ $...eqn(v)$
-----------book page break-----------
$eqn(iii)$ $\times$ $eqn(iv)$ $\times$ $eqn(v)$ gives us:
$\dfrac{AF}{FB} \times \dfrac{CE}{EA} \times \dfrac{CE}{EA}= \dfrac{[CPA]}{[CPB]} \times \dfrac{[APB]}{[APC]} \times \dfrac{[BPC]}{[BPA]}$
$\dfrac{AF\cdot BD \cdot CE}{FB \cdot DC \cdot EA} = 1$