Stewart's Theorem
$\underline{Definition:}$
$Cevian$ is the general term used for any line segment drawn from any vertex of a triangle to the opposite side. By that definition, the medians, the angle bisectors, altitudes are cevians. However, the perpendicular bisectors are not always cevians.
$\underline{Theory:}$
For any $\triangle ABC$, if a cevian $AD$, of length $d$, divides the opposite side $BC$ into two parts, $m$ and $n$ respectively, then:
$b^2m + c^2n = a(d^2 + mn)$, where $a,\ b,\ c$ are the lengths of the three sides $BC$, $CA$ and $AB$ respectively.
$\underline{Construction:}$
In $\triangle ABC$ with side lengths $a,\ b,\ c$, let $D$ be a point on $BC$ such that $BD = m$, $DC = n$.
-----------book page break-----------
Altitude $AP$ is drawn to $BC$.
Let $DP = x$
$\underline{Proof:}$
Considering right-angled $\triangle APD$,
$d^2 = h^2 + x^2$
Considering $\triangle APC$
$b^2 = h^2 + (n - x)^2$
$\Rightarrow b^2m = h^2m + m(n-x)^2$
$\Rightarrow b^2m = h^2m + mn^2 - 2mnx + mx^2$
Considering $\triangle APB$
$c^2 = h^2 + (m + x)^2$
$\Rightarrow c^2n = h^2n + n(m + x)^2$
$\Rightarrow c^2n = h^2n + nm^2 + 2mnx + nx^2$
Therefore,
$b^2m + c^2n = h^2m + mn^2 - 2mnx + mx^2 + h^2n + nm^2 + 2mnx + nx^2$
$\Rightarrow b^2m + c^2n = h^2m + h^2n + mx^2 + nx^2 + nm^2 + mn^2$
$\Rightarrow b^2m + c^2n = h^2(m + n) + x^2(m + n) + mn(m + n)$
$\Rightarrow b^2m + c^2n = (m + n)(h^2 + x^2 + mn)$
Substituting $m + n = a$ and $h^2 + x^2 = d^2$
$b^2m + c^2n = a(d^2 + mn)$
-----------book page break-----------
$\underline{Corollary\ 1:}$
If $AD$ is a median of $\triangle ABC$, of length $d$, then:
$2d^2 = b^2 + c^2 - \dfrac{a^2}{2}$
Using the generic case for a cevian, when the cevian is a median, we have:
$m = n = \dfrac{1}{2}a^2$
From Stewart's Theorem, we know:
$b^2m + c^2n = a(d^2 + mn)$
$\therefore \dfrac{b^2a}{2} + \dfrac{c^2a}{2} = a\left(d^2 + \dfrac{a^2}{4}\right)$
$\Rightarrow \dfrac{b^2}{2} + \dfrac{c^2}{2} = \left(d^2 + \dfrac{a^2}{4}\right)$
$\Rightarrow b^2 + c^2 = 2d^2 + \dfrac{a^2}{2}$
$\Rightarrow 2d^2 = b^2 + c^2 - \dfrac{a^2}{2}$
$\underline{Corollary\ 2:}$
$\unicode{0x201C}$The sum of the squares of the distances of a triangle from the vertices is equal to one-third the sum of the squares of the sides.$\unicode{0x201D}$
Let $m_a,\ m_b,\ m_c$ be the three medians to sides $a$, $b$ and $c$ respectively.
-----------book page break-----------
Using $Corollary\ 1$, we get:
$2m_a^2=b^2+c^2-\dfrac{1}{2}a^2$
$2m_b^2=a^2+c^2-\dfrac{1}{2}b^2$
$2m_c^2=a^2+b^2-\dfrac{1}{2}c^2$
Adding the three equations above, we get:
$2m_a^2+2m_b^2+2m_c^2=b^2+c^2-\dfrac{1}{2}a^2+a^2+c^2-\dfrac{1}{2}b^2+a^2+b^2-\dfrac{1}{2}c^2$
$\Rightarrow 2m_a^2+2m_b^2+2m_c^2=\dfrac{3}{2}a^2+\dfrac{3}{2}b^2+\dfrac{3}{2}c^2$
$\Rightarrow2(m_a^2+m_b^2+m_c^2)=\dfrac{3}{2}(a^2+b^2+c^2)$
$\Rightarrow m_a^2+m_b^2+m_c^2=\dfrac{3}{4}(a^2+b^2+c^2)$
$\Rightarrow\dfrac{4}{9}(m_a^2+m_b^2+m_c^2)=\dfrac{1}{3}(a^2+b^2+c^2)$
$\Rightarrow\left(\dfrac{2}{3}m_a\right )^2+\left(\dfrac{2}{3}m_b\right) ^2+\left(\dfrac{2}{3}m_c\right )^2=\dfrac{1}{3}(a^2+b^2+c^2)$
$\therefore$ The sum of the squares of the distances of a triangle from the vertices is equal to one-third the sum of the squares of the sides.