Derivatives Of Hyperbolic Functions


In this chapter, we will be discuss the derivatives of hyperbolic functions - $\sinh {x}$, $\cosh {x}$, $\tanh {x}$, $\csch {x}$, $\sech {x}$ and $\coth {x}$. If you aren't familiar with hyperbolic functions you may want to go through this  once.

I. Derivative of $\sinh x$:
$\dfrac{d}{dx} \sinh {x} $

$= \dfrac{d}{dx} \dfrac{e^x - e^{-x}}{2} $

$= \dfrac{1}{2} \left[\dfrac{d}{dx} e^x - \dfrac{d}{dx} e^{-x} \right] $

$= \dfrac{1}{2} [ e^x - (- e^{-x})] $

$=  \dfrac{e^x + e^{-x}}{2} $

$= \cosh {x}$

II. Derivative of $\cosh x$
$\dfrac{d}{dx} \cosh {x} $

$= \dfrac{d}{dx} \dfrac{e^x + e^{-x}}{2} $

-----------book page break-----------
$= \dfrac{1}{2} \left[\dfrac{d}{dx} e^x + \dfrac{d}{dx} e^{-x} \right] $

$= \dfrac{1}{2} [ e^x + (- e^{-x})] $

$=  \dfrac{e^x - e^{-x}}{2} $

$= \sinh {x}$

III. Derivative of $\tanh x$
$\dfrac{d}{dx} \tanh {x}$

$= \dfrac{d}{dx} \left(\dfrac{\sinh x}{\cosh x}\right)$

$= \dfrac{\cosh x\dfrac{d}{dx} \sinh x -\sinh\dfrac{d}{dx}\cosh x}{(\cosh^2 x)}$

$=\dfrac{\cosh^2 x - \sinh^2 x}{\cosh^2 x}$

$=\dfrac{1}{\cosh^2 x} $

$= \sech^2 x$

-----------book page break-----------
IV. Derivative of $\csch x$
$\dfrac{d}{dx} \csch x$

$= \dfrac{d}{dx} \left(\dfrac{1}{\sinh x}\right)$

$= \dfrac{\sinh x\dfrac{d}{dx}1 -1\dfrac{d}{dx}\sinh x}{(\sinh^2 x)}$

$=-\dfrac{\cosh x}{\sinh^2 x}$

$=- \dfrac{\cosh x}{\sinh x} \times \dfrac{1}{\sinh x}$

$= -\coth x \cdot \csch x$

V. Derivative of $\sech x$
$\dfrac{d}{dx} \sech x$

$= \dfrac{d}{dx} \left(\dfrac{1}{\cosh x}\right)$

$= \dfrac{\cosh x\dfrac{d}{dx}1 -1\dfrac{d}{dx}\cosh x}{(\cosh^2 x)}$

-----------book page break-----------
$=-\dfrac{\sinh x}{\cosh^2 x}$

$=- \dfrac{\sinh x}{\cosh x} \times \dfrac{1}{\cosh x}$

$= -\tanh x \cdot \sech x$

VI. Derivative of $\coth x$
$\dfrac{d}{dx} \coth {x}$

$= \dfrac{d}{dx} \left(\dfrac{\cosh x}{\sinh x}\right)$

$= \dfrac{\sinh x\dfrac{d}{dx} \cosh x -\cosh\dfrac{d}{dx}\sinh x}{(\sinh^2 x)}$

$=\dfrac{\sinh^2 x - \cosh^2 x}{\sinh^2 x}$

$=- \dfrac{1}{\sinh^2 x} $

$= -\csch^2 x$