$= \displaystyle{\lim_{\Delta x \to 0}\dfrac{(2 + \Delta x + 2)(2 + \Delta x - 2)}{2 + \Delta x - 2}}$
$= \displaystyle{\lim_{\Delta x \to 0}\dfrac{(4 + \Delta x)(\Delta x)}{\Delta x}}$
$= \displaystyle{\lim_{\Delta x \to 0}(4 + \Delta x)}$
$= 4$
II. Left And Right Side Limits:
Here we will take a look at the limit of a function $f(x)$ at the point $x = a$ as $x$ approaches $a$ from the left hand side as well as from the right hand side.
The notation commonly used here, is:
$\lim\limits_{x \rightarrow a^-}f(x)$ for left hand limit, which, in other words, means as $x$ approaches $a$ from the left hand (negative) side, and
$\lim\limits_{x \rightarrow a^+}f(x)$ for the right hand limit, which means as $x$ approaches $a$ from the right hand (positive) side.
-----------book page break-----------
Formally, we can define the left hand limit $L$ as,
$\lim\limits_{x \rightarrow a^-}f(x) = L$ if for any $\epsilon \gt 0$, there exists $\delta(\epsilon)$ such that for all $0 \lt a - x \lt \delta(\epsilon)$ the inequality $|f(x) - L| \lt \epsilon$ holds true.
Similarly, for the right hand limit $B$ as,
$\lim\limits_{x \rightarrow a^+}f(x) = R$ if for any $\epsilon \gt 0$, there exists $\delta(\epsilon)$ such that for all $0 \lt x - a \lt \delta(\epsilon)$ the inequality $|f(x) - R| \lt \epsilon$ holds true
If $\lim\limits_{x \rightarrow a^-}f(x) = \lim\limits_{x \rightarrow a^+}f(x) = A$ for some finite value $A$, then we can say that:
$\lim\limits_{x \rightarrow a}f(x) = A$
If, on the other hand, $\lim\limits_{x \rightarrow a^-}f(x) \ne \lim\limits_{x \rightarrow a^+}f(x)$, but both limits exist, then $\lim\limits_{x \rightarrow a}f(x)$ is not defined.
The above statements means that for an assigned value $a$ of the independent variable $x$, if the value of the function can be brought arbitrarily close to a finite value $A$ of the function, then that value of the function is called the limit of the function as the variable $x$ approaches the value $a$.
-----------book page break-----------
Now try this problem:
--------- Reference to question: cfdd67f4-e609-48ba-83a4-9a1260f349fc ---------
III. Properties Of Limits
If for two functions $f(x)$ and $g(x)$, both $\lim\limits_{x \rightarrow a} f(x)$ and $\lim\limits_{x \rightarrow a} g(x)$ exist, then the limit of their composite functions obey the following rules: