Derivatives Of Trigonometric Functions
In this section we will learn the formulae for the derivatives of trigonometric functions, and their derivations.
I. Derivative Of sin(x):
Based on the definition of derivatives explained , the derivative of $\sin x$ is given by:
$\dfrac{d }{dx}(\sin x) = \lim\limits_{\Delta x \rightarrow 0} \dfrac{\sin (x + \Delta x) - \sin x}{\Delta x}$
$= \lim\limits_{\Delta x \rightarrow 0} \dfrac{\sin x \cos \Delta x + \sin \Delta x \cos x - \sin x}{\Delta x}$
$= \lim\limits_{\Delta x \rightarrow 0} \dfrac{\sin x (\cos \Delta x - 1) + \sin \Delta x \cos x}{\Delta x}$
$= \lim\limits_{\Delta x \rightarrow 0} \dfrac{\sin \Delta x \cos x - \sin x (1 - \cos \Delta x)}{\Delta x}$
$= \lim\limits_{\Delta x \rightarrow 0} \dfrac{\sin \Delta x}{\Delta x} \cos x - \lim\limits_{\Delta x \rightarrow 0} \sin x \dfrac{(1 - \cos \Delta x)}{\Delta x}$
$= \cos x \cdot \lim\limits_{\Delta x \rightarrow 0} \dfrac{\sin \Delta x}{\Delta x} - \sin x \cdot \lim\limits_{\Delta x \rightarrow 0} \dfrac{(1 - \cos \Delta x)}{\Delta x}$
$= 1\cdot \cos x - \sin x \cdot 0$
$= \cos x$
-----------book page break-----------
II. Derivative Of cos(x):
$\dfrac{d}{dx} (\cos x) = \lim\limits_{\Delta x \rightarrow 0} \dfrac{\cos (x + \Delta x) - \cos x}{\Delta x}$
$= \lim\limits_{\Delta x \rightarrow 0} \dfrac{\cos x \cdot \cos \Delta x - \sin x \cdot \sin \Delta x - \cos x}{\Delta x}$
$= \lim\limits_{\Delta x \rightarrow 0} \dfrac{\cos x (\cos \Delta x - 1) - \sin x \cdot \sin \Delta x}{\Delta x}$
$= \lim\limits_{\Delta x \rightarrow 0} \dfrac{- \sin x \cdot \sin \Delta x - \cos x (1 - \cos \Delta x) }{\Delta x}$
$= - \sin x \cdot \lim\limits_{\Delta x \rightarrow 0} \dfrac{\sin \Delta x}{\Delta x} - \cos x \cdot \lim\limits_{\Delta x \rightarrow 0} \dfrac{ (1 - \cos \Delta x) }{\Delta x}$
$= -\sin x \cdot 1 - \cos x \cdot 0$
$= - \sin x$
III. Derivative of tan(x):
$\dfrac{d}{dx}(\tan x)$
$= \dfrac{d}{dx} \left[\dfrac{\sin x}{\cos x}\right]$
$= \dfrac{\cos x \dfrac{d}{dx} (\sin x) - \sin x \dfrac{d}{dx} (\cos x)}{\cos^2 x}$
-----------book page break-----------
$= \dfrac{\cos x \cdot \cos x - \sin x (-\sin x)}{\cos^2 x}$ (using the )
$= \dfrac{\cos^2 x + \sin^2 x}{\cos^2 x}$
$= \dfrac{1}{\cos^2 x}$
$= \sec^2 x$
IV. Derivative Of csc(x):
$\dfrac{d}{dx} \csc (x)$
$= \dfrac{d}{dx} \left[\dfrac{1}{\sin x}\right] = \dfrac{d}{dx} [\sin x]^{-1}$
$= \dfrac{d}{d (\sin x)} [\sin x]^{-1} \cdot \dfrac{d}{dx} \sin x $
$= - [\sin x]^{-2} \cdot \cos x$
$= - \dfrac{\cos x}{\sin^2 x}$
$= - \cot x \cdot \csc x$
-----------book page break-----------
V. Derivative Of sec(x):
$\dfrac{d}{dx}sec(x)$
$= \dfrac{d}{dx} \left[\dfrac{1}{\cos x}\right] = \dfrac{d}{dx} [\cos x]^{-1}$
$= \dfrac{d}{d (\cos x)} [\cos x]^{-1} \cdot \dfrac{d}{dx} \cos x$
$= - [\cos x]^{-2} \cdot (-\sin x)$
$= \dfrac{\sin x}{\cos^2 x} = \tan x \cdot \sec x$
VI. Derivative Of cot(x):
$\dfrac{d}{dx}cot(x)$
$= \dfrac{d}{dx} \left[\dfrac{1}{\tan x}\right] = \dfrac{d}{dx} [\tan x]^{-1}$
$= \dfrac{d}{d (\tan x)} [\tan x]^{-1} \cdot \dfrac{d}{dx} \tan x$
$= - [\tan x]^{-2} \cdot \sec^2 x$
$= -\dfrac{\sec^2 x}{\tan^2 x}$
$= - \csc^2 x$