In this chapter we will learn about trigonometric ratios of compound angles (of the form $A \pm B$) and their derivations.
I. Evaluating sin(A ± B):
We draw the diagram for our proof as follows.
Draw $\angle AOB$ such that $m\angle AOB = A$ and $\angle BOC$ such that $m\angle BOC = B$. From any point $P$ on $CO$ drop perpendiculars $PM$ and $PN$ to $AO$ and $BO$ respectively. From $N$ draw perpendiculars $NQ$ and $NR$ to $AO$ and $PM$ respectively, as shown in the following diagram:
$Fig.\ 1$
-----------book page break-----------
$\angle NRM = \angle RMQ = 90^\circ$
Therefore, $NRMQ$ is a rectangle with $NR \parallel QM \therefore NR \parallel OA$
$\cos (A - B) = \cos(A + (-B)) = \cos A \cos (-B) - \sin A \sin (-B)$
$= \cos A \cos B + \sin A \sin B$
III. Evaluating tan(A ± B):
For finding out the expansion of $\tan (A \pm B)$ we will use the formula for $\sin (A \pm B)$ and $\cos (A \pm B)$ from the previous two sections.
-----------book page break-----------
$\tan (A + B) = \dfrac{\sin (A + B)}{\cos (A + B)}$
$= \dfrac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}$
$= \dfrac{\dfrac{1}{\cos A \cos B} \times \left(\sin A \cos B + \cos A \sin B\right)}{\dfrac{1}{\cos A \cos B} \times \left(\cos A \cos B - \sin A \sin B\right)}$
$= \dfrac{\dfrac{\sin A}{\cos A} + \dfrac{\sin B}{\cos B}}{1 - \dfrac{\sin A \times \sin B}{\cos A \times \cos A}}$
$= \dfrac{\tan A + \tan B}{1 - \tan A \tan B}$
(Observe, that $\because \tan A$ and $\tan B$ are finite, $A \ne 90^\circ$ and $B \ne 90^\circ$, $\therefore \cos A \ne 0$ and $\cos B \ne 0$. therefore dividing by $\cos A \cos B$ is a valid step)
Similarly,
$\tan (A - B)$
$= \dfrac{\sin (A - B)}{\cos (A - B)}$
$= \dfrac{\sin A \cos B - \cos A \sin B}{\cos A \cos B + \sin A \sin B}$
-----------book page break-----------
$= \dfrac{\dfrac{1}{\cos A \cos B} \times \left(\sin A \cos B - \cos A \sin B\right)}{\dfrac{1}{\cos A \cos B} \times \left(\cos A \cos B + \sin A \sin B\right)}$
$= \dfrac{\dfrac{\sin A}{\cos A} - \dfrac{\sin B}{\cos B}}{1 + \dfrac{\sin A \times \sin B}{\cos A \times \cos A}}$