Problem Contributed By Community Member debroy0611
This is an adaptation of a relatively simple problem from the 2024 GaoKao.
$\tan \alpha \tan \beta = 2$
$\Rightarrow \dfrac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta} = 2$
$\Rightarrow \sin \alpha \sin \beta = 2 \cos \alpha \cos \beta$
$\cos(\alpha + \beta) = \dfrac{1}{4}$
$\Rightarrow \cos \alpha \cos \beta - \sin \alpha \sin \beta = \dfrac{1}{4}$
$\Rightarrow \cos \alpha \cos \beta - 2 \cos \alpha \cos \beta = \dfrac{1}{4}$
$\therefore \cos \alpha \cos \beta = - \dfrac{1}{4}$ and $\sin \alpha \sin \beta = -\dfrac{1}{2}$
$\therefore \cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta = - \dfrac{3}{4} = -0.75$