-----------book page break-----------
Let $p_1, p_2, p_3$ be the probabilities that students $S_1, S_2, S_3$ solve the problem, respectively. Assuming independence:
$P(V) = P(S_1 \mid S_2^c \cap S_3^c) = p_1 = \dfrac{1}{10}$
$P(W) = P(S_2 \cap S_3^c) = p_2(1 - p_3) = \dfrac{1}{12}$
$P(U) = 1 - (1 - p_1)(1 - p_2)(1 - p_3) = \dfrac{1}{2}$
Substitute $p_1 = \dfrac{1}{10}$ into the equation for $P(U)$:
$1 - \dfrac{9}{10}(1 - p_2)(1 - p_3) = \dfrac{1}{2}$
$\Rightarrow (1 - p_2)(1 - p_3) = \dfrac{5}{9}$
Expanding $(1 - p_2)(1 - p_3)$ gives $(1 - p_3) - p_2(1 - p_3)$.
Substituting $P(W) = \dfrac{1}{12}$, we get:
$(1 - p_3) - \dfrac{1}{12} = \dfrac{5}{9}$
-----------book page break-----------
$ \Rightarrow 1 - p_3 = \dfrac{20}{36} + \dfrac{3}{36} = \dfrac{23}{36}$
$\Rightarrow p_3 = 1 - \dfrac{23}{36} = \dfrac{13}{36}$
Thus, $P(T) = p_3 = \dfrac{13}{36}$.