Problem Contributed By Community Member debroy0611

image containing math problem statement
An smart integration problem from the 2024 Caltech Math Meet. This problem requires no more knowledge than basic integration.
Problem contributed by debroy0611
-----------book page break-----------
Let:
$I = \displaystyle \int \limits_0^{\infty} \dfrac{dx}{(1 + x^2)(1 + 2024^{\ln x})}$

We can write $2024$ as $e^{\ln 2024}$, which gives us:

$I = \displaystyle \int \limits_0^{\infty} \dfrac{dx}{(1 + x^2)\left(1 + \left(e^{\ln 2024}\right)^{\ln x}\right)}$

$\Rightarrow I = \displaystyle \int \limits_0^{\infty} \dfrac{dx}{(1 + x^2)\left(1 + \left(e^{\ln x}\right)^{\ln 2024}\right)}$

$\Rightarrow I = \displaystyle \int \limits_0^{\infty} \dfrac{dx}{(1 + x^2)\left(1 + x^{\ln 2024}\right)}$

Let $\ln 2024 = a$,

$\Rightarrow I = \displaystyle \int \limits_0^{\infty} \dfrac{dx}{(1 + x^2)\left(1 + x^a\right)}$        $...(i)$

-----------book page break-----------
Let $x = \dfrac{1}{u} \Rightarrow dx = -\dfrac{1}{u^2}du$

$\therefore I = \displaystyle \int \limits_\infty^{0} \dfrac{-du}{\left(1 + \left( \dfrac{1}{u} \right)^2 \right) \left(1 + \left( \dfrac{1}{u} \right)^a\right)u^2}$

$\Rightarrow I = \displaystyle \int \limits_0^{\infty} \dfrac{u^a du}{\left(u^2 + 1 \right) \left(u^a  +1 \right)}$

Renaming $u$ with $x$, we get:

$I = \displaystyle \int \limits_0^{\infty} \dfrac{x^a dx}{\left(1 + x^2 \right) \left(1 + x^a \right)}$        $...(ii)$

Adding $eqns\ (i)$ and $(ii)$ we get:

$2I = \displaystyle \int \limits_0^{\infty} \dfrac{dx}{\left(1 + x^2 \right) \left(1 + x^a \right)} + \displaystyle \int \limits_0^{\infty} \dfrac{x^a dx}{\left(1 + x^2 \right) \left(1 + x^a \right)}$

$\Rightarrow 2I = \displaystyle \int \limits_0^{\infty} \dfrac{\cancel{\left(1 + x^a \right)} dx}{\left(1 + x^2 \right) \cancel{\left(1 + x^a \right)}}$

-----------book page break-----------
Substituting $x = \tan \theta$, $dx = \sec^2 \theta$ (limits $x = 0$, $\theta = 0$ and $x = \infty$, $\theta = \dfrac{\pi}{2}$), we get:
$2I =  \displaystyle \int \limits_0^{\frac{\pi}{2}} \dfrac{\sec^2 \theta d \theta}{1 + \tan^2 \theta}$

$\Rightarrow 2I = \displaystyle \int \limits_0^{\frac{\pi}{4}}  \dfrac{\cancel{(\sec^2 \theta)} d \theta}{\cancel {\sec^2 \theta}} = \theta \biggr |_0^{\frac{\pi}{2}}$

$\therefore I  =\dfrac{\pi}{4}$, $\Rightarrow a = 1$ and $b = 4$

$\therefore a + b = 5$