A Simple Problem From The 2024 IOQM

image containing math problem statement
This is a relatively simple problem from the 2024 Indian Olympiad Qualifier.
Problem contributed by debosmita1729
Let $\log_a(b) = t$
 
$t + \dfrac{6}{t} = 5$
 
$\Rightarrow t^2 - 5t + 6 = 0$
 
$\Rightarrow t = 2$ or $3$
 
$\Rightarrow \log_a(b) = 2$ or $3$
 
$\Rightarrow b = a^2$ or $a^3$
 
From the bounds given, 
 
$a^2 \leq 2023$ and $a^3 \leq 2023$
 
$\Rightarrow a \in \{2,...,44\}$ and $a \in \{2,...,12\}$
 
So, the number possible values of $(a,b)$ is:
 
$(44 - 2 + 1) + (12 - 2 + 1) = 43 + 11 = 54$