-----------book page break-----------
Given that:
$\lim\limits_{t \rightarrow x} \dfrac{f(x) \sin t - f(t) \sin x}{t - x} = \sin^2 x$
Since the bottom limit tends to $0$, and the limit exists, we can apply L'Hopital's rule and the derivative of the numerator will also be $0$
Differentiating the numerator w.r.t $t$ and equating it to $0$, we get:
$\lim \limits_{t \rightarrow x}\dfrac{\dfrac{d}{dt} \left(f(x) \sin t - f(t) \sin x \right)}{\dfrac{d}{dt}(t-x)} = \sin^2 x$
$\Rightarrow \lim \limits_{t \rightarrow x}\dfrac{f(x) \cos t - f'(t) \sin x}{1} = \sin^2 x$
$\Rightarrow f(x) \cos x - f'(x) \sin x = \sin^2 x$
$\Rightarrow \dfrac{f(x) \cos x - f'(x) \sin x}{\sin^2 x} = 1$
$\Rightarrow \dfrac{d}{dx} \left( \dfrac{f(x)}{\sin x} \right) = 1$
-----------book page break-----------
$\Rightarrow -\dfrac{f(x)}{\sin x} = x + C$
$\Rightarrow f(x) = -x \sin x - C \sin x$
Substituting $x = \dfrac{\pi}{6}$ we get:
$f\left( \dfrac{\pi}{6} \right) = - \dfrac{\pi}{6} \left( \dfrac{1}{2} \right) - \dfrac{C}{2} $
$\Rightarrow -\dfrac{\pi}{12} = -\dfrac{\pi}{12} - \dfrac{C}{2} $
$\Rightarrow C = 0$
$\therefore f(x) = -x \sin x$
$f\left( \dfrac{\pi}{4} \right) = -\left( \dfrac{\pi}{4 \sqrt{2}} \right)$
$\therefore $ The first option is wrong
$f'(x) = -x \cos x - \sin x = 0$
$\Rightarrow -x \cos x = \sin x$
$\Rightarrow \tan x = -x$
-----------book page break-----------
$\tan x$ is in the range $(-\infty, 0)$ for $x \in \left(\dfrac{\pi}{2}, \pi \right)$
Therefore, the curve of $\tan x$ and the line $y = -x$ has to intersect at some point in this range.
The above has a solution in the domain $x \in (0, \pi)$ (specifically in the second quadrant).
$\therefore$ The second option is correct
$f''(x) = x \sin x - \cos x - \cos x$
$\Rightarrow f'' \left( \dfrac{\pi}{2} \right) = \dfrac{\pi}{2}$
$\Rightarrow f \left( \dfrac{\pi}{2} \right) = -\dfrac{\pi}{2}$
$\therefore f'' \left( \dfrac{\pi}{2} \right) + f \left( \dfrac{\pi}{2} \right) = 0$
$\therefore$ The third option is correct.
For the last option we need to check:
$-x \sin x \lt \dfrac{x^4}{6} - x^2$ for all $x \in (0, \pi)$
$\Rightarrow x \sin x + \dfrac{x^4}{6} - x^2 \gt 0$ $(\because x > 0)$ in the given domain.
$\Rightarrow \sin x + \dfrac{x^3}{6} - x \gt 0$
-----------book page break-----------
Let $\sin x + \dfrac{x^3}{6} - x = g(x)$
$\therefore g(0) = 0$
$g'(x) = \cos x + \dfrac{x^2}{2} - 1$
$\therefore g'(0) = 0$
$g''(x) = - \sin x + x$ and $g''(0) = 0$
And finally we have:
$g'''(x) = -\cos x + 1 = 1 - \cos x$ and $g'''(0) = 0$
In the given domain $x \in (0, \pi)$ $g'''(x)$ is positive.
Therefore, $g''(x)$ is increasing in the given domain.
$g''(0)$ is $0$ and $g''(x)$ is increasing, therefore, $g''(x)$ is also positive in the given domain.
Similarly, since both $g'(0)$ and $g(0)$ are zeros, we can show that $g'(x)$ is positive in the given domain and so is $g(x)$
Therefore, the fourth option is also correct.