Let:
$S = \displaystyle \sum\limits_{1 \le i \le j \le 2024} a_ia_j$
$\Rightarrow 2S = \displaystyle 2 \cdot \left(\sum\limits_{1 \le i \le j \le 2024} a_ia_j \right)$
-----------book page break-----------
$\Rightarrow 2S = \displaystyle \left(\sum\limits_{1 \le i \le j \le 2024} 2 \cdot a_ia_j \right)$
$\Rightarrow 2S = (a_1 + a_2 + a_3 + ... + a_{2024})^2 - (a_1^2 + a_2^2 + a_3^2 + ... + a_{2024}^2)$
For any $a_i = \pm 1$, $a_i^2 = 1$,
$\therefore (a_1^2 + a_2^2 + a_3^2 + ... + a_{2024}^2) = 2024$
Therefore,
$2S = (a_1 + a_2 + a_3 + ... + a_{2024})^2 - 2024$ $...(i)$
Therefore, the smallest positive value of $2S$ is achieved when $(a_1 + a_2 + a_3 + ... + a_{2024})^2$ is the smallest even perfect square greater than $2024$.
Let the count of $(+1)$s in the series be $m$, therefore the count of $(-1)$s is $2024 - m$.
Then the sum of all the terms will be:
$a_1 + a_2 + a_3 + ... + a_{2024} = m \times (+1) + (2024 - m)(-1)$
$\Rightarrow a_1 + a_2 + a_3 + ... + a_{2024} = 2m - 2024$
$\Rightarrow (a_1 + a_2 + a_3 + ... + a_{2024})^2 = (2m - 2024)^2$
Substituting this value in $eqn\ (i)$, we get:
$2S = (2m - 2024)^2 - 2024$
Observe that $2m - 2024$ will always be an even number.
-----------book page break-----------
The smallest even perfect square, greater than $2024$ is $46^2 = 2116$
Therefore, the smallest positive value of $2S$ is:
$2S = 2116 - 2024 = 92$
$\Rightarrow S = 46$