As a first step, let us simplify the expression inside the integration sign:
$\sqrt{x \sqrt[3]{x \sqrt[4]{x \sqrt[5]{x...}}}}$
$= \sqrt{x} \cdot \sqrt{ \sqrt[3]{x \sqrt[4]{x \sqrt[5]{x...}}}}$
-----------book page break-----------
$= x^{\frac{1}{2}} \cdot \sqrt{ \sqrt[3]{x \sqrt[4]{x \sqrt[5]{x...}}}}$
$= x^{\frac{1}{2}} \cdot \sqrt{ \sqrt[3]{x}} \sqrt{\sqrt[3]{\sqrt[4]{x \sqrt[5]{x...}}}}$
$= x^{\frac{1}{2}} \cdot x^{\frac{1}{2} \cdot \frac{1}{3}} \sqrt{\sqrt[3]{\sqrt[4]{x \sqrt[5]{x...}}}}$
$= x^{\frac{1}{2}} \cdot x^{\frac{1}{2} \cdot \frac{1}{3}} \sqrt{\sqrt[3]{\sqrt[4]{x}}} \sqrt{\sqrt[3]{\sqrt[4]{\sqrt[5]{x...}}}}$
$= x^{\frac{1}{2}} \cdot x^{\frac{1}{2} \cdot \frac{1}{3}} \cdot x^{\frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{4}} \cdot x^{\frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{4} \cdot \frac{1}{5}}...$
$= x^{\frac{1}{2} + \frac{1}{2} \cdot \frac{1}{3} + \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{4} \cdot \frac{1}{5}...}$
$= x^{\frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!}...}$
The expression in the exponent is related to $e$, in the sense that:
$e = 1 + \dfrac{1}{1!} + \dfrac{1}{2!} + \dfrac{1}{3!} + \dfrac{1}{4!} + \dfrac{1}{5!}...$
$\Rightarrow e = 1 + 1 + \dfrac{1}{2!} + \dfrac{1}{3!} + \dfrac{1}{4!} + \dfrac{1}{5!}...$
$\Rightarrow e - 2 = \dfrac{1}{2!} + \dfrac{1}{3!} + \dfrac{1}{4!} + \dfrac{1}{5!}...$
-----------book page break-----------
Therefore, we get the integral as:
$\displaystyle \int x^{e-2} dx$
$= \dfrac{x^{e-1}}{e-1}$