-----------book page break-----------
Let us extend the line $PQ$ to meet $AB$ at $R$ as shown in the figure below:
Let each side of the square be of length $x$ units.
The area of the trapezium $AQPD$ is
$\dfrac{1}{2} \times PD \times (AD + QP) = \dfrac{1}{2} \times PD \times (x + QP)$
Similarly, the area of the trapezium $BQPC$ is:
$\dfrac{1}{2} \times PC \times (BC + QP) = \dfrac{1}{2} \times PC \times (x + QP)$
-----------book page break-----------
Therefore,
$\dfrac{area[AQPD]}{area[BQPC]} = \dfrac{\cancel{\dfrac{1}{2}} \times PD \times \cancel{(x + QP)}}{\cancel{\dfrac{1}{2}} \times PC \times \cancel{(x + QP)}} = \dfrac{9}{4}$
$\Rightarrow PD:PC = 9:4$
Let $PD = 9k$ and $PC = 4k$
$\therefore AR = 9k$ and $RB = 4k$
Using right angled $\triangle AQB$ and altitude $QR$, we know:
$\triangle ARQ \sim \triangle QRB$
Therefore,
$\dfrac{AR}{QR} = \dfrac{QR}{RB}$
Therefore,
$QR^2 = AR \times RB$
$QR^2 = 9k \times 4k$
$\Rightarrow QR = 6k$
Considering the area of $AQPD$, we have
$area[AQPD] = \dfrac{1}{2} \times PD \times (AD + QP) = 9$
$\Rightarrow area[AQPD] = \dfrac{1}{2} \times 9k \times (13k + 7k)$
-----------book page break-----------
$\therefore 9k \times (13k + 7k) = 18$
$\Rightarrow k \times 20k = 2$
$\Rightarrow k^2 = \dfrac{1}{10}$
$\Rightarrow k = \dfrac{1}{\sqrt{10}}$
The area of $\triangle AQB = \dfrac{1}{2} AB \times QR$
$\Rightarrow area[\triangle AQB] = \dfrac{1}{2} \times 13k \times 6k$
$\Rightarrow area[\triangle AQB] = \dfrac{1}{2} \times 13k \times 6k$
$\Rightarrow area[\triangle AQB] = 39k^2$
$\Rightarrow area[\triangle AQB] = 39 \times \dfrac{1}{10}$
$\Rightarrow ar[\triangle AQB] = \dfrac{39}{10}$
$\therefore a = 39$ and $b = 10$ and $a + b = 49$