A Very Simple Plane Geometry Problem From The Spanish Math Olympiad.

image containing math problem statement
This problem from the Spanish Mathematical Olympiad, requires no special knowledge for solving it. Just some basic concepts with a little bit of smart thinking can do the trick.
-----------book page break-----------
Let us extend the line $PQ$ to meet $AB$ at $R$ as shown in the figure below:


Let each side of the square be of length $x$ units.

The area of the trapezium $AQPD$ is
$\dfrac{1}{2} \times PD \times (AD + QP) = \dfrac{1}{2} \times PD \times (x + QP)$

Similarly, the area of the trapezium $BQPC$ is:
$\dfrac{1}{2} \times PC \times (BC + QP) = \dfrac{1}{2} \times PC \times (x + QP)$

-----------book page break-----------
Therefore,
$\dfrac{area[AQPD]}{area[BQPC]} = \dfrac{\cancel{\dfrac{1}{2}} \times PD \times \cancel{(x + QP)}}{\cancel{\dfrac{1}{2}} \times PC \times \cancel{(x + QP)}} = \dfrac{9}{4}$

$\Rightarrow PD:PC = 9:4$

Let $PD = 9k$ and $PC = 4k$
$\therefore AR = 9k$ and $RB = 4k$

Using right angled $\triangle AQB$ and altitude $QR$, we know:
$\triangle ARQ \sim \triangle QRB$

Therefore,
$\dfrac{AR}{QR} = \dfrac{QR}{RB}$

Therefore,
$QR^2 = AR \times RB$

$QR^2 = 9k \times 4k$

$\Rightarrow QR = 6k$

Considering the area of $AQPD$, we have
$area[AQPD] = \dfrac{1}{2} \times PD \times (AD + QP) = 9$

$\Rightarrow area[AQPD] = \dfrac{1}{2} \times 9k \times (13k + 7k)$

-----------book page break-----------
$\therefore 9k \times (13k + 7k) = 18$

$\Rightarrow k \times 20k = 2$

$\Rightarrow k^2 = \dfrac{1}{10}$

$\Rightarrow k = \dfrac{1}{\sqrt{10}}$

The area of $\triangle AQB = \dfrac{1}{2} AB \times QR$

$\Rightarrow area[\triangle AQB] = \dfrac{1}{2} \times 13k \times 6k$

$\Rightarrow area[\triangle AQB] = \dfrac{1}{2} \times 13k \times 6k$

$\Rightarrow area[\triangle AQB] = 39k^2$

$\Rightarrow area[\triangle AQB] = 39 \times \dfrac{1}{10}$

$\Rightarrow ar[\triangle AQB] = \dfrac{39}{10}$

$\therefore a = 39$ and $b = 10$ and $a + b = 49$