Let us first try to get an expression for the $n\xasuper{th}$ term as a function of the previous terms.
$f(1) + f(2) + f(3) + ... + f(n-1) + f(n) = n^2 f(n)$
$\Rightarrow f(1) + f(2) + f(3) + ... + f(n-1) = n^2 f(n) - f(n)$
-----------book page break-----------
$\Rightarrow f(n) = \dfrac{1}{n^2 - 1} \times [f(1) + f(2) + f(3) + ... + f(n-1)]$
We can now find the first few terms of this series from the given information:
$f(2) = \dfrac{1}{2^2-1} f(1)$
$f(3) = \dfrac{1}{3^2-1} \left[f(1) + f(2) \right]$
$= \dfrac{1}{3^2-1} \left[f(1) + \dfrac{1}{2^2-1} f(1) \right]$
$= \dfrac{1}{3^2-1} \left[1 + \dfrac{1}{2^2-1} \right] f(1)$
$= \dfrac{1}{3^2-1} \left[\dfrac{2^2}{2^2-1} \right] f(1)$
$= \dfrac{1}{2^2-1} \dfrac{2^2}{3^2-1} f(1)$
Similarly, we get:
$f(4) = \left( \dfrac{1}{2^2-1} \right) \left(\dfrac{2^2}{3^2-1} \right) \left( \dfrac{3^2}{4^2-1} \right) f(1)$
$...$
-----------book page break-----------
For $f(n)$ we get:
$f(n) = \left( \dfrac{1^2}{2^2-1} \right) \left(\dfrac{2^2}{3^2-1} \right) \left( \dfrac{3^2}{4^2-1} \right)...\left( \dfrac{(n-1)^2}{n^2-1} \right) f(1)$
$= \left( \dfrac{(2-1)^2}{2^2-1} \right) \left(\dfrac{(3-1)^2}{3^2-1} \right) \left( \dfrac{(4-1)^2}{4^2-1} \right)...\left( \dfrac{(n-1)^2}{n^2-1} \right) f(1)$
$= \left( \dfrac{(2-1)}{2 + 1} \right) \left(\dfrac{(3-1)}{3 + 1} \right) \left( \dfrac{(4-1)}{4 + 1} \right)...\left( \dfrac{(n-1)}{n + 1} \right) f(1)$
$= \left( \dfrac{1}{\cancel{3}} \right) \left(\dfrac{2}{\cancel{4}} \right) \left( \dfrac{\cancel{3}}{\cancel{5}} \right)...\left( \dfrac{\cancel{n-1}}{n + 1} \right) f(1)$
Observe that each denominator, except for the last two terms, will cancel out with the numerator of its next to next term.
Cancelling out, and simplifying the above terms, we get:
$= \dfrac{1 \times 2}{n(n+1)} f(1)$
$\therefore f(2024) = \dfrac{1 \times 2}{ 2024 \times 2025} \times 2024$
$= \dfrac{2}{ 2025} $
Therefore, $m = 2$, $n = 2025$ and $(m + n) = 2027$