We will solve this problem using the concept of .
Observe that $2^n$ can be written as $(3 - 1)^n$.
Taking $modulo\ 3$ we get:
$2^n \equiv (3 - 1)^n \equiv (-1)^n\ (mod\ 3)$
Therefore, $2^n$ is congruent to $1$ for even $n$ and $-1$ that is $3 - 1 = 2$ for odd $n$.
-----------book page break-----------
Therefore, $\left \lfloor \dfrac{2^n}{3} \right \rfloor = \dfrac{2^n - 1}{3}$ for even $n$ and
$\left \lfloor \dfrac{2^n}{3} \right \rfloor = \dfrac{2^n - 2}{3}$ for odd $n$.
The first term of the series, $\left \lfloor \dfrac{2^0}{3} \right \rfloor$ is $0$ so we can ignore it to give the series an even number of terms.
Now, we can write the given series as odd and even $n$ as follows:
$\displaystyle \sum \limits_{n = 1}^{1000} \left \lfloor \dfrac{2^{n}}{3} \right \rfloor$
$= \displaystyle \sum \limits_{k = 1}^{500} \left( \left \lfloor \dfrac{2^{2k-1}}{3} \right \rfloor + \left \lfloor \dfrac{2^{2k}}{3} \right \rfloor \right)$
$= \displaystyle \sum \limits_{k = 1}^{500} \left( \dfrac{2^{2k-1} - 2}{3} + \dfrac{2^{2k} - 1}{3} \right)$
$= \displaystyle \sum \limits_{k = 1}^{500} \left( \dfrac{2^{2k-1} - 2 + 2^{2k} - 1}{3} \right)$
$= \displaystyle \sum \limits_{k = 1}^{500} \left( \dfrac{ 2^{2k-1} + 2^{2k} - 3}{3} \right)$
-----------book page break-----------
$= \displaystyle \sum \limits_{k = 1}^{500} \left( \dfrac{ 2^{2k-1} + 2^{2k}}{3} \right) - \sum \limits_{k = 1}^{500} 1$
$= \displaystyle \sum \limits_{n = 1}^{1000} \left( \dfrac{ 2^{n}}{3} \right) - 500$
$= \displaystyle \dfrac{\dfrac{2}{3} (2^{1000} - 1)}{(2 - 1)} - 500$
$= \displaystyle \dfrac{\dfrac{2}{3} (2^{1000} - 1)}{(2 - 1)} - 500$
$= \displaystyle \dfrac{2}{3} (2^{1000} - 1) - 500$
$= \displaystyle \dfrac{ (2^{1001} - 2 - 1500)}{3}$
$= \displaystyle \dfrac{ 2^{1001} - 1502}{3}$
Therefore,
$a = 1001, b = 1502, c = 3$
$\Rightarrow a + b + c = 2506$